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a b s t r a c t

This paper is concerned with mean field linear quadratic social control with common noise, where the
weight matrices of individual costs are indefinite We first obtain a set of forward–backward stochastic
differential equations (FBSDEs) from variational analysis, and then construct a centralized feedback
representation by decoupling the FBSDEs. By using solutions of two Riccati equations, we design a set
of decentralized control laws, which is further shown to be asymptotically social optimal. The necessary
and sufficient conditions are given for uniform stabilization of the systems by exploiting the relation
between population state average and aggregate effect. An explicit expression of the optimal social
cost is given in terms of two Riccati equations. Besides, the decentralized optimal solution is provided
for mean field social control problem with finite agents.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background and motivation

The subject of mean field (MF) games and control has attracted
ncreasing attention from communities of system control, mathe-
atics and economics (Bensoussan, Frehse, & Yam, 2013; Caines,
uang, & Malhame, 2017; Carmona & Delarue, 2018; Gomes &
aude, 2014). A MF model involves a large number of interactive
layers (agents), where a key feature is while the influence of
ach agent is negligible, the impact of the overall population is
ignificant to each one. The main idea of MF approximations is to
eplace the average interaction of an agent with all other agents
y aggregation effect. By consistent MF approximations, the di-
ensionality difficulty is overcome. By now, the linear quadratic

LQ) framework has been commonly adopted in MF studies be-
ause of its analytical tractability and close connection to practical
pplications. In this aspect, some relevant works include (Ben-
oussan, Sung, Yam, & Yung, 2016; Elliott, Li, & Ni, 2013; Huang,
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Conference, July 27–30, 2019, Guangzhou, China. This paper was recommended
for publication in revised form by Associate Editor Valery Ugrinovskii under the
direction of Editor Ian R. Petersen.
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005-1098/© 2022 Elsevier Ltd. All rights reserved.
Caines, & Malhamé, 2007; Li & Zhang, 2008; Moon & Basar, 2017;
Wang & Zhang, 2012b). Huang et al. developed the Nash certainty
equivalence (NCE) based on the fixed-point analysis and designed
ϵ-Nash equilibria for large-population LQ games with discounted
costs (Huang et al., 2007). The NCE approach was then applied to
the more general cases with ergodic costs (Li & Zhang, 2008) and
with Markov jump parameters (Wang & Zhang, 2012b), respec-
tively. The works (Bensoussan et al., 2016; Carmona & Delarue,
2013) employed the adjoint equation approach and the fixed-
point theorem to obtain sufficient conditions for the existence of
equilibrium strategies over a finite horizon. For other aspects of
MF games, readers are referred to Carmona and Delarue (2013),
Huang, Malhamé, and Caines (2006) and Lasry and Lions (2007)
for nonlinear MF games, Weintraub, Benkard, and Roy (2008) for
oblivious equilibrium in dynamic games, Huang (2010) and Wang
and Zhang (2012a), for MF games with major players, Huang and
Huang (2017) and Moon and Basar (2017) for robust MF games.

Mean field games with common noise are a kind of large-
population games with correlated players who share a common
random noise (Carmona, Delarue, & Lacker, 2016). The com-
mon noise may be interpreted as a passive version of the major
player (Huang & Wang, 2015). Such modeling can accommodate
considerable situations since common noise may represent some
external factors with influence on all players. This is well-framed
in reality, particularly in finance and economics; for instance, the
physical environment for all particles or a financial policy for
all market participants (Carmona, Fouque, & Sun, 2015; Guéant,
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asry, & Lions, 2011). Due to the impact of common noise, all
he players are not independent of each other, but correlative
r strong coupling. Consequently, MF games with common noise
re within a more general setting, and the related analysis be-
omes more technical. The work (Carmona et al., 2016) studied
trong and weak solutions to MF games with common noise
rom the fixed point analysis in random measure flows. The well-
osedness problem was further considered in Ahuja (2016). The
ork (Graber, 2016) investigated a general LQ-MF type control
nd connected it to mean field games with common noise. The
F limit of large-population symmetric games was derived with
nd without common noise, respectively (Lacker, 2016).
Besides noncooperative games, the social optima in MF models

ith weak coupling have drawn more research interests. By social
ptimization, all players in a large-population system cooper-
te to optimize the common social cost—the sum of individual
osts. Accordingly, we formulate a type of team decision prob-
em (Radner, 1962). Different from Nash games, all players in
team problem share the same cost and cooperate to reach a

ocial optimum although they may have different information
ets (Ho, 1980). The work (Huang, Caines, & Malhamé, 2012) stud-
ed social optima in MF-LQ control, and provided an asymptotic
eam-optimal solution. Subsequently, Wang and Zhang (2017)
nvestigated a MF social optimal problem where the Markov
ump parameter appears as a common source of randomness.
he work (Huang & Nguyen, 2016) designed socially optimal
trategies by analyzing forward backward stochastic differential
quations (FBSDEs). In Salhab, Ny, and Malhame (2018), authors
nvestigated dynamic cooperative collective choice by finding a
ocial optimum. Furthermore, some recent studies focused on
tochastic dynamic teams and their MF limit, such as Sanjari and
uksel (2019).

.2. Novelty and contributions

This paper investigates decentralized control of MF-LQ social
ontrol with common noise, where the weight matrices in indi-
idual costs are indefinite. The presence of common noise leads
o the strong correlations of all agents, which makes the corre-
ponding analysis much more complicated (Carmona et al., 2016).
ost previous works on MF social control applied the fixed-point
ethod and person-by-person optimality (see e.g. Huang et al.,
012; Salhab et al., 2018; Wang & Zhang, 2017). However, due
o the appearance of common noise, the corresponding fixed-
oint analysis is very complicated (Huang, Wang, & Yong, 2020).
n this paper, we obtain decentralized control of the problem by
ecoupling directly high-dimensional FBSDEs with MF approx-
mations. This procedure shares a similar philosophy with the
irect method (Huang & Zhou, 2020; Lasry & Lions, 2007; Wang,
hang, & Zhang, 2020). In recent years, some progress has been
ade for the study of the optimal LQ control by tackling FBSDEs.
eaders are referred to Carmona and Delarue (2013), Wang et al.
2020), Yong (2013), Zhang (2021), Zhang, Qi, and Fu (2019) etc.
or details.

For the finite-horizon problem, we first obtain a set of high-
imensional FBSDEs by tackling the large-scale social control
roblem, and give a centralized feedback-type control laws (only
epending on the state of a representative agent and population
tate average) by decoupling the FBSDEs. By the MF heuristics, we
esign a set of decentralized control laws, which is further shown
o be asymptotically optimal. An explicit form of the asymptotic
ocial optimal cost is given in terms of solutions to two Riccati
quations. Besides, we apply the result to obtain decentralized
olution to a class of MF social control problem with finite agents.
or the infinite-horizon case, we first design a set of decentralized
ontrol laws with help of two Riccati equations, and then show
 a

2

the consistency of MF approximations by the Lyapunov function
method. By exploiting the relationship between population state
average and aggregate effect, two equivalent conditions are given
for uniform stabilization of all the subsystems.

The main contributions of the paper are listed as follows.

• For the finite-horizon problem, we first obtain the existence
conditions of centralized optimal control by variational anal-
ysis, and then design a feedback decentralized control by
decoupling FBSDEs and applying MF approximations.

• With the help of condition expectation, we give the de-
centralized optimal solution to a class of MF social control
problem with finite agents.

• For the infinite-horizon problem, feedback decentralized
control laws are designed with help of the solutions to
Riccati equations. Two equivalent conditions are given for
uniform stabilization of all the subsystems by making full
use of the relation between population state average and
aggregate effect.

• Under some basic assumptions we obtain asymptotic op-
timality of decentralized control. No fixed-point equations
or additional assumptions are needed. Besides, an explicit
expression of the optimal social cost is given by virtue of
two Riccati equations.

.3. Organization and notation

The organization of the paper is as follows. In Section 2, we
irst design the asymptotical optimal control for finite-horizon MF
ocial control problems, and then give the optimal decentralized
ontrol of MF social problems with finite agents. In Section 3,
e design decentralized controls for the infinite-horizon case
nd further give necessary and sufficient conditions for uniform
tabilization of the systems. In Section 4, a numerical example is
iven to verify the results. Section 5 concludes the paper.
The following notation will be used throughout this paper. We

se | · | to denote the norm of a Euclidean space, or the Frobenius
orm for matrices. For a symmetric matrix Q and a vector z,
z|2Q = zTQz. Q † is the Moore–Penrose pseudoinverse1 of the
atrix Q ; R(Q ) denotes the range of a matrix (or an operator)
. For a vector or matrix M , MT denotes its transpose, and
> 0 (M ≥ 0) means that M is positive definite (nonnegative

efinite). Let Sn denote the space of all symmetric n × n matri-
es. Let L∞(0, T ;Rn×k) (resp., C([0, T ];Rn×k)) be the space of all
n×k-valued bounded (resp. continuous bounded) functions; let
2
F (0, T ;Rk) be the space of all Rk-valued Ft-adapted processes
x(·) satisfying E

∫ T
0 |x(t)|2dt < ∞. For convenience of presen-

tation, we use c, c0, c1, . . . to denote generic positive constants,
which may vary from place to place.

2. Finite horizon mean field LQ social control

Consider a large population system with N agents. The ith
agent Ai evolves by the following stochastic differential equation
(SDE):

dxi(t) = [A(t)xi(t) + G(t)x(N)(t) + B(t)ui(t) + f (t)]dt
+ [C(t)xi(t) + D(t)ui(t) + σ (t)]dWi(t)

+ [C0(t)xi(t) + D0(t)ui(t) + σ0(t)]dW0(t), (1)

here 1 ≤ i ≤ N , xi ∈ Rn and ui ∈ Rr are the state and input
f the agent Ai. x(N)(t) =

1
N

∑N
j=1 xj(t) is the population state

1 Q † is a unique matrix satisfying QQ †Q = Q †,Q †QQ †
= Q , (Q †Q )T = Q †Q ,

nd (QQ †)T = QQ † .
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verage. {Wi(t), 0 ≤ i ≤ N} are a sequence of independent 1-
imensional Brownian motions on a complete filtered probability
pace (Ω,F, {Ft}0≤t≤T ,P). A, B, G, C,D, C0 and D0 are determin-
stic matrix-valued functions with compatible dimensions, where
0
t = σ (W0(s), 0 ≤ s ≤ t). f , σ and σ0 are F0

t -adapted vector-
alued processes in Rn, reflecting the impact on each agent by

the environment. The cost functional of Ai is given by

JFi (u) =E
∫ T

0

{ ⏐⏐xi(t) − Γ (t)x(N)(t) − η(t)
⏐⏐2
Q (t) + |ui(t)|2R(t)

}
dt

+ E|xi(T ) − Γ0x(N)(T ) − η0|
2
H .

(2)

where Q , R and Γ are bounded deterministic matrix-valued func-
tions with compatible dimensions. Denote u = {u1, . . . , ui, . . . ,

uN}. Let F i
t = σ (xi(0),Wi(s), 0 ≤ s ≤ t), and Gi

t = σ (xi(s),Wi(s),
W0(s), 0 ≤ s ≤ t), i = 1, . . . ,N . Denote Ft = σ {

⋃N
i=0 F

i
t}. Define

the centralized control set as

Uc =

{
(u1, . . . , uN )

⏐⏐ ui(t) is adapted to Ft ,

E
∫ T

0
|ui(t)|2dt < ∞

}
,

and the decentralized control set as

Ud =

{
(u1, . . . , uN )

⏐⏐ui(t) is adapted to Gi
t ,

E
∫ T

0
|ui(t)|2dt < ∞

}
.

In this section, we mainly study the two problems:
(P1). Seek a set of centralized control laws to optimize the

social cost JFsoc for the system (1)–(2), i.e., infu∈Uc J
F
soc(u), where

JFsoc(u) =
∑N

i=1 J
F
i (u).

(P1′). Seek a set of decentralized controls to optimize social
cost JFsoc for the system (1)–(2), i.e., infu∈Ud J

F
soc(u).

Assume
(A1) The coefficients satisfy the following conditions:
(i) A,G, C, C0,Γ ∈ L∞(0, T ;Rn×n), and B,D,D0 ∈ L∞(0, T ;

Rn×r );
(ii) Q ∈ L∞(0, T ; Sn), and R ∈ L∞(0, T ; Sr );
(iii) f , σ , σ0, η ∈ L2F0 (0, T ;Rn);
(iv) Γ0 ∈ Rn×n, and H ∈ Sn are bounded; η0 ∈ Rn is

F0
T -adapted, and E(|η0|2) < ∞.
(A2) xi(0), i = 1, . . . ,N are mutually independent and have

the same mathematical expectation. xi(0) = xi0, E[xi(0)] = x̄0,
i = 1, . . . ,N . There exists a constant c0 (independent of N) such
that max1≤i≤N E|xi(0)|2 < c0.

We now provide a practical example.

Example 2.1 (Systemic Risk Model). Consider a model of inter-
bank borrowing and lending where the log-monetary reserves xi,
i = 1, . . . ,N evolve by

dxi(t) = − A(t)[xi(t) − x(N)(t)]dt + ui(t)dt

+ σ (W0)(
√
1 − ρ2dWi(t) + ρdW0(t)),

where W0 is a common Brownian motion, and Wi, i = 1, . . . ,N
re idiosyncratic Brownian motions, independent of W0. A(t) is
he rate of mean-reversion in interactions from inter-bank bor-
owing and lending; σ (W0) is stochastic volatility of bank re-
erves. ρ ∈ [−1, 1] is the correlation coefficient between idiosyn-
ratic noise and common noise. Each bank controls its rate of
ending or borrowing to minimize JFsoc(u) =

∑N
i=1 J

F
i (u) where

F
i (u) = E

∫ T [
Q (t)[xi(t) − x(N)(t)]2 + u2

i (t)
]
dt.
0
s

3

Compared with the original model in Carmona et al. (2015),
social optimization is considered here with applications in gov-
ernment regulation, community welfare, etc.

From now on, time variable t may be suppressed if no confu-
sion occurs. To simplify the statement, denote by{
QΓ

∆
= Γ TQ + QΓ − Γ TQΓ , HΓ0

∆
= Γ T

0 H + HΓ0 − Γ T
0 HΓ0,

η̄
∆
= Qη − Γ TQη, η̄0

∆
= Hη0 − Γ T

0 Hη0.

.1. Design of control laws

efinition 2.1 (Zǎlinescu, 1983). Problem (P1) is convex, if for any
< λ < 1 and u, v ∈ L2F (0, T ;Rnr ),

F
soc(λu + (1 − λ)v) ≤ λJFsoc(u) + (1 − λ)JFsoc(v).

articularly, (P1) is uniformly convex, if we have
F
soc(λu + (1 − λ)v) ≤ λJFsoc(u) + (1 − λ)JFsoc(v)

− λ(1 − λ)E
∫ T

0
|u − v|2dt.

We first obtain the necessary and sufficient conditions for the
xistence of centralized optimal control of (P1).

heorem 2.1. Assume (A1)–(A2) hold. Then (P1) has an opti-
al control ǔ ∈ Uc if and only if (P1) is convex in u and the

ollowing equation system admits a set of solutions (x̌i, pi, {β
j
i }

N
j=0,

= 1, . . . ,N):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̌i =
(
Ax̌i + Bǔi + Gx̌(N)

+ f
)
dt + (Cx̌i + Dǔi + σ )dWi

+ (C0x̌i + D0ǔi + σ0)dW0, x̌i(0) = xi0,

dpi = −
(
ATpi + GTp(N)

+ CT
0 β

0
i + CTβ i

i

)
dt

−
(
Q x̌i − QΓ x̌(N)

− η̄
)
dt +

N∑
j=0

β
j
idWj,

pi(T ) = Hx̌i(T ) − HΓ0 x̌
(N)(T ) − η̄0, i = 1, . . . ,N,

(3)

here p(N)
=

1
N

∑N
i=1 pi and the optimal control ǔi satisfies the

stationary condition

Rǔi + BTpi + DTβ i
i + DT

0β
0
i = 0. (4)

Particularly, if Problem (P1) is uniformly convex, then (P1) admits
an optimal control necessarily.

Proof. See Appendix A. □

Eqs. (3)–(4) are a fully coupled FBSDE. It is nonstandard due
to MF terms appearing in both forward and backward equa-
tions, thus its solvability becomes quite technical. Related works
on solvability and control problems of FBSDEs may be referred
to Yong and Zhou (1999), Peng and Wu (1999) and Wang, Wu,
and Xiong (2013).

Now we make the following assumption:
(A3) Problem (P1) is uniformly convex.2

By (A3), (P1) admits a unique optimal control. The next step is
to obtain a proper form for deriving the decentralized feedback
representation of optimal control.

2 By Sun, Li, and Yong (2016, Theorem 4.5), a necessary and sufficient
ondition to guarantee (A3) is that the corresponding Riccati equation admits a
trongly regular solution.
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Denote x̌(N)
=

1
N

∑N
i=1 x̌i, x̌(N)

i0 =
1
N

∑N
i=1 x̌i0 and ǔ(N)

=

1
N

∑N
i=1 ǔi. It follows from (3) that

x̌(N)
=

[
(A + G)x̌(N)

+ Bǔ(N)
+ f

]
dt

+
1
N

N∑
i=1

(Cx̌i + Dǔi + σ )dWi

+(C0x̌(N)
+ D0ǔ(N)

+ σ0)dW0, x̌(N)(0) = x̌(N)
i0 .

(5)

We now use the idea inspired by Yong and Zhou (1999) and
Zhang et al. (2019) to decouple the FBSDE (3). Let pi = PN x̌i +

KN x̌(N)
+ ϕN , where PN , KN ∈ Rn×n, and ϕN satisfies

dϕN = ϕ̌Ndt + γNdW0, ϕN (T ) = −η̄0.

Here ϕ̌N and γN are to be determined. Then by (3), (5) and Itô’s
formula,

dpi = PN
[(

Ax̌i + Bǔi + Gx̌(N)
+ f

)
dt + (Cx̌i + Dǔi + σ )dWi

+ (C0x̌i + D0ǔi + σ0)dW0

]
+ṖN x̌idt + K̇N x̌(N)dt

+ KN

{[
(A + G)x̌(N)

+ Bǔ(N)
+ f

]
dt

+
1
N

N∑
j=1

(Cx̌j + Dǔj + σ )dWj

+ (C0x̌(N)
+ D0ǔ(N)

+ σ0)dW0

}
+ϕ̌Ndt + γNdW0

(6)

Comparing this with (3), it follows that

β0
i = PN (C0x̌i + D0ǔi + σ0)

+ KN (C0x̌(N)
+ D0ǔ(N)

+ σ0) + γN ,

β i
i = (PN +

1
N
KN )(Cx̌i + Dǔi + σ ),

β
j
i =

1
N
KN (Cx̌j + Dǔj + σ ), 1 ≤ j ̸= i ≤ N.

rom (4), we have for any i = 1, . . . ,N ,

N ǔi + ΨN x̌i +ΘN x̌(N)
+ DT

0KND0ǔ(N)
+ ψN = 0,

where

ΥN = R + DT (
PN +

KN

N

)
D + DT

0PND0,

ΨN = BTPN + DT (
PN +

1
N
KN

)
C + DT

0PNC0,

ΘN = BTKN + DT
0KNC0,

ψN = DT (PN +
KN

N
)σ + DT

0(PN + KN )σ0

+ BTϕN + DT
0γN .

(7)

This further implies

ǔ(N)
= −(ΥN + DT

0KND0)†[(ΨN +ΘN )x̌(N)
+ ψN ].

Thus, we obtain that the optimal control is given by

ǔi = − Υ
†
NΨN (x̌i − x̌(N)) − (ΥN + DT

0KND0)†

× [(ΨN +ΘN )x̌(N)
+ ψN ].

(8)

This together with (6) gives

ṖN + ATPN + PNA + CT (
PN +

KN

N

)
C + Q

+ CT
0 PNC0 − Ψ T

NΥ
†
NΨN = 0, PN (T ) = H, (9)

˙N + (A + G)TKN + KN (A + G) + CT
0 KNC0 + GTPN

+ P G − (Ψ +Θ )T (Υ + DTK D )†(Ψ +Θ )
N N N N 0 N 0 N N

4

+ Ψ T
NΥ

†
NΨN − QΓ = 0, KN (T ) = −HΓ0 , (10)

ϕN = −

{
[A + G − B(ΥN + DT

0KND)†(ΨN +ΘN )]TϕN

+ [C − D(ΥN + DT
0KND0)†(ΨN +ΘN )]T

× (PN +
1
N
KN )σ + [C0 − D0(ΥN + DT

0KND0)†

× (ΨN +ΘN )]T [(PN + KN )σ0 + γN ]

+ (PN + KN )f − η̄

}
dt + γNdW0, ϕN (T ) = −η̄0. (11)

ote that (11) is a linear backward SDE. If (9)–(10) admit solu-
ions, then (11) has a solution. From the above discussion and
heorem 2.1, we have the following result.

roposition 2.1. Assume that (A1)–(A3) hold, and (9)–(10) respec-
ively admits a solution such that

(ΨN ) ⊆ R(ΥN ), ψ ∈ R(ΥN + DT
0KND0),

(ΨN +ΘN ) ⊆ R(ΥN + DT
0KND0).

hen Problem (P1) has an optimal control given by (8).

Denote⎧⎪⎪⎪⎨⎪⎪⎪⎩
Υ = R + DTPD + DT

0PD0, Ῡ = Υ + DT
0KD0,

Ψ = BTP + DTPC + DT
0PC0,

Θ = BTK + DT
0KC0,

ψ = DTPσ + DT
0(P + K )σ0 + BTϕ + DT

0γ ,

(12)

here P , K and (ϕ, γ ) satisfy

˙ + ATP + PA + CTPC + CT
0 PC0+

+ Q − Ψ TΥ †Ψ = 0, P(T ) = H, (13)
˙−

[
(A + G)TK + K (A + G) + CT

0 KC0

− (Ψ +Θ)T Ῡ †(Ψ +Θ) + Ψ TΥ †Ψ

+ GTP + PG − QΓ = 0, K (T ) = −HΓ0 , (14)

ϕ = −

{
[A + G − B(Υ + DT

0KD0)†(Ψ +Θ)]Tϕ

+ [C − DῩ †(Ψ +Θ)]TPσ + (P + K )f

+ [C0 − D0Ῡ
†(Ψ +Θ)]T [(P + K )σ0 + γ ] − η̄

}
dt

+ γ dW0, ϕ(T ) = −η̄0. (15)

For further analysis, we assume
(A4) (13)–(15) have solutions such that Υ , Ῡ ≥ 0, and

(Ψ (t)) ⊆ R(Υ (t)), R(Ψ (t) +Θ(t)) ⊆ R(Ῡ (t)),
(t) ∈ R(Ῡ (t)), t ∈ [0, T ].

emark 2.1. If (A4) holds, then by the continuous dependence
f the solution on the parameter (see e.g. Khalil (2002, Theorem
.5) or Huang and Zhou (2020, Theorem 4)), we obtain for a
ufficiently large N , (9)–(11) admit solutions, respectively.

Let N → ∞. By the law of large numbers, we may approxi-
ate x(N) in (5) with x̄, which satisfies

x̄ =
{
[A + G − BῩ †(Ψ +Θ)]x̄ − BῩ †ψ + f

}
dt

+
{
[C0 − D0Ῡ

†(Ψ +Θ)]x̄ − D0Ῡ
†ψ + σ0

}
dW0, (16)

ith x̄(0) = x̄0. By Proposition 2.1, the decentralized control law
or agent Ai, i = 1, . . . ,N may be taken as

ˆ i(t) = − Υ †(t)Ψ (t)[x̂i(t) − x̄(t)]
¯ † [ ] (17)
− Υ (t) (Ψ (t) +Θ(t))x̄(t) + ψ(t) ,
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here Υ , Ῡ ,Ψ ,Θ , ψ and x̄ are determined by (12)–(16), and x̂i
atisfies

x̂i =
{
Āx̂i + Gx̂(N)

+ B[Υ †Ψ − Ῡ †(Ψ +Θ)]x̄ − BῩ †ψ

+ f
}
dt +

{
C̄ x̂i + D[Υ †Ψ − Ῡ †(Ψ +Θ)]x̄

− DῩ †ψ + σ
}
dWi +

{
C̄0x̂i + D0[Υ

†Ψ

− Ῡ †(Ψ +Θ)]x̄ − D0Ῡ
†ψ + σ0

}
dW0, (18)

with

Ā ∆
= A − BΥ †Ψ , C̄ ∆

= C − DΥ †Ψ , C̄0
∆
= C0 − D0Υ

†Ψ . (19)

Remark 2.2. Previous works (e.g., Bensoussan et al., 2016; Car-
mona & Delarue, 2013; Graber, 2016; Huang et al., 2012) con-
sidered LQ-MF models by the fixed-point approach. To achieve
asymptotic optimality, an additional condition like the solvability
of fixed point equations is needed, which is not easy to be
verified. Furthermore, for MF social control with common noise,
the tackling process is more complicated. In Huang et al. (2020)
and Qiu, Huang, and Xie (2021), authors first constructed a new
auxiliary system by two-step duality and then derived a consis-
tency condition system, which is a MF FBSDE with embedding
representation. Here, we get rid of fixed-point conditions and MF
FBSDEs thoroughly (Note that ϕ and x̄ are fully decoupled).

We are in a position to give asymptotic social optimality of the
decentralized control.

Theorem 2.2. Assume that (A1)–(A4) hold. For Problem (P1′), the
set of decentralized control laws {û1, · · · , ûN} given by (17) has
asymptotic social optimality, i.e.,⏐⏐⏐ 1
N
JFsoc(û) −

1
N

inf
u∈Uc

JFsoc(u)
⏐⏐⏐ = O(

1
√
N
).

roof. See Appendix B. □

2.2. Asymptotically social optimal cost

We now give an explicit expression of the asymptotic average
social cost in terms of two Riccati equations.

Theorem 2.3. Assume that (A1)–(A4) hold and {xi0} have the same
variance. Then for (P1′), the asymptotic average social optimum is
given by

lim
N→∞

1
N
JFsoc(û) =E

[
(xi0 − x̄0)TP(0)(xi0 − x̄0)

+ x̄T0Π (0)x̄0 + 2ϕT (0)x̄0
]

+qT ,

where P , Π are given by (13) and (14) (Π = P + K ), and

T
∆
=E

∫ T

0

[
|σ |

2
P + |σ0|

2
Π + 2ϕT f + 2γ Tσ0 + |η|2Q

− |BTϕ + DTPσ + DT
0Πσ0 + DT

0γ |
2
Ῡ−1

]
dt + E[|η0|

2
H ].

roof. See Appendix C. □

emark 2.3. The MF-type control problem (see e.g., Carmona
Delarue, 2018; Graber, 2016) is a closely related problem to

he MF social control. The setups of both problems are different.
he MF social control is multi-agent optimization, and there are
large number of agents with their own states and controls. In
ontrast, the mean field type control is single-agent optimization.
owever, the optimal solutions of both problems coincide for the
nfinite population case (see details in Appendix C).
5

.3. Mean field social optimal control with finite agents

We now consider the case G = 0. Denote Hi
t = σ (xi(0),Wi(s),

W0(s), s ≤ t) and

U ′

d =

{
(u1, . . . , uN )

⏐⏐ui(t) is adapted to Hi
t ,

E
∫ T

0
|ui(t)|2dt < ∞

}
.

n analogy to Theorem 2.1, we obtain the result for the existence
f decentralized optimal control of (P1′).

roposition 2.2. Assume that (A1)–(A2) hold and (P1′) is convex
in u. Then {u∗

i , i = 1, . . . ,N} is a set of optimal control laws of (P1′)
with respect to U ′

d if and only if the following equation system admits
a set of solutions (x∗

i , p
∗

i , β
j,∗
i , i = 1, . . . ,N, j = 0, 1, . . . ,N):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx∗

i =
(
Ax∗

i + Bu∗

i + f
)
dt + (Cx∗

i + Du∗

i + σ )dWi

+ (C0x∗

i + D0u∗

i + σ0)dW0, x∗

i (0) = xi0,

dp∗

i = −
[
ATp∗

i + CT
0 β

0,∗
i + CTβ

i,∗
i

]
dt

−
(
Qx∗

i − QΓ x(N)
∗

− η̄
)
dt +

N∑
j=0

β
j,∗
i dWj,

pi(T ) = Hx∗

i (T ) − HΓ0x
(N)
∗

(T ) − η̄0, i = 1, . . . ,N,

(20)

where x(N)
∗ =

1
N

∑N
i=1 x

∗

i and the optimal control u∗

i satisfies the
stationarity condition

Ru∗

i + E[BTp∗

i + DTβ
i,∗
i + DT

0β
0,∗
i |Hi

t ] = 0. (21)

Proof. See Appendix D. □

Remark 2.4. The main difference between Theorems 2.1 and
2.2 lies in different stationarity conditions. Intuitively, (21) is
obtained by applying conditional expectation into the zero vari-
ational condition.

Note that Wi, Wj (j ̸= i) and W0 are mutually independent, and
x∗

j (t) ∈ Hj
t . We have

E[x∗

j (t)|H
i
t ] = E[x∗

j (t)|F
0
t ]=EF0 [x∗

i (t)], j ̸= i. (22)

It follows from (20) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dEF0 [x∗

i ] =
(
AEF0 [x∗

i ] + BEF0 [u∗

i ] + f
)
dt

+ (C0EF0 [x∗

i ] + D0EF0 [u∗

i ] + σ0)dW0,

dEHi [p∗

i ] =−
(
ATEHi [p∗

i ] + CT
0 EHi [β

0,∗
i ]

)
dt

−
[
CTEHi [β

i,∗
i ] + (Q −

1
N
QΓ )x∗

i − η̄

−
N − 1
N

QΓ EF0 [x∗

i ]
]
dt + β

0,∗
i dW0 + β

i,∗
i dWi,

x∗

i (0) = xi0, EHi [pi(T )] =
(
H −

1
N
HΓ0

)
x∗

i (T )

−
N − 1
N

HΓ0EF0 [x∗

i (T )] − η̄0, i = 1, . . . ,N.

(23)

Define

u∗

i = − Υ̃
†
N Ψ̃N (x∗

i − EF0 [x∗

i ]) − (Υ̃N + DT
0K

∗

ND0)†

× [(Ψ̃N + Θ̃N )EF0 [x∗

i ] + ψ∗

N ], (24)

where Υ̃N , Ψ̃N , Θ̃N are given by

Υ̃N = R + DTP∗

ND + DT
0P

∗

ND0,

Ψ̃N = BTP∗

N + DTP∗

NC + DT
0P

∗

NC0,

Θ̃N = BTK ∗

N + DT
0K

∗

NC0,

∗ T ∗ T ∗ ∗ T ∗ T ∗
ψN = D PNσ + D0(PN + KN )σ0 + B ϕN + D0γN ,
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nd P∗

N , K
∗

N and ϕ∗

N satisfy

˙ ∗

N + ATP∗

N + P∗

NA + CTP∗

NC + CT
0 P

∗

NC0

+ Q −
1
N
QΓ − Ψ̃ T

NΥ
−1
N Ψ̃N = 0, P∗

N (T ) = H −
1
N
HΓ0 , (25)

˙ ∗

N + ATK ∗

N + K ∗

NA + CT
0 K

∗

NC0 + Ψ̃ T
N Υ̃

−1
N Ψ̃N

− (Ψ̃N + Θ̃N )T (Υ̃ −1
N + DT

0K
∗

ND0)(Ψ̃N + Θ̃N )

−
N − 1
N

QΓ = 0, K ∗

N (T ) = −
N − 1
N

HΓ0 , (26)

ϕ∗

N = −

{
[A − B(Υ̃N + DT

0K
∗

ND)
−1(Ψ̃N + Θ̃N )]Tϕ∗

N

+ [C − D(Υ̃N + DT
0K

∗

ND)
−1(Ψ̃N + Θ̃N )]TP∗

Nσ

+ [C0 − D0(Υ̃N + DT
0K

∗

ND)
−1(Ψ̃N + Θ̃N )]T

× [(P∗

N + K ∗

N )σ0 + γ ∗

N ] + (P∗

N + K ∗

N )f − η̄

}
dt

+ γ ∗

NdW0, ϕ
∗

N (T ) = −η̄0, (27)

Theorem 2.4. Assume that (A1)–(A2) hold and (P1′) is convex in
u. Eqs. (9)–(10) admit a set of solutions. Then {u∗

1, . . . , u
∗

N} given by
(24) is social optimal with respect to the decentralized control set
U ′

d, i.e., for any u ∈ U ′

d, the following holds: JFsoc(u
∗) ≤ JFsoc(u).

Proof. See Appendix D. □

Remark 2.5. In general, there are two methods to tackle Prob-
lem (P1′). The first one is to find asymptotic optimal solutions;
another one is to seek the optimal solution for (fixed) N agents.
Most works on MF control focused on the former one. Indeed, the
latter one can be obtained in some cases. Theorem 2.4 provides a
social optimal solution for (P1′) with N agents.

3. Infinite horizon mean field LQ control

In this section, we consider the infinite-horizon MF social con-
trol problem. For simplicity, suppose A(t), B(t), C(t), D(t), C0(t),
D0(t), Γ (t), Q (t) and R(t) are constant matrices. Assume Q ≥ 0
and R > 0; f , σ , σ0, η ∈ L2F0 (0,∞;Rn). The cost of Ai is given by

Ji(u) =E
∫

∞

0

{ ⏐⏐xi(t) − Γ x(N)(t) − η(t)
⏐⏐2
Q + |ui(t)|2R

}
dt. (28)

In what follows, we study the following problem.
(P2). Seek a set of decentralized control laws to optimize the

social cost Jsoc for the system (1), (28) where Jsoc(u) =
∑N

i=1 Ji(u).
We first introduce some definitions. Consider the system

dy = (Ay + Bu)dt + (Cy + Du)dW (t)

+ (C0y + D0u)dW0(t), y(0) = y, (29)

z = Fy, (30)

where y(t) ∈ Rn, and W (t),W0(t) are 1-dimensional Brownian
motions.

Definition 3.1. The system (29) with u = 0 (or simply [A, C, C0])
is said to be mean-square stable, if for any initial y, there exists
c > 0 such that E

[ ∫
∞

0 |y(t)|2dt
]
≤ c .

Definition 3.2. The system (29) (or [A, C, C0; B,D,D0]) is said
to be (mean-square) stabilizable, if there exists a control law
u∗(t) = Ky(t) such that for any initial y, the closed-loop system
is mean-square stable,

dy(t) = (A + BK )y(t)dt + (C + DK )y(t)dW (t)

+ (C0 + D0K )y(t)dW0(t). L

6

Definition 3.3 (Zhang, Zhang, & Chen, 2008). The system (29)–
(30) (or simply [A, C, C0; F ]) is said to be exactly detectable, if
there exists a T0 ≥ 0 such that for any T > T0, z(t) = 0, u(t) =

0, a.s., 0 ≤ t ≤ T implies limt→∞ E[yT (t)y(t)] = 0.

We now introduce the following basic assumptions:
(A5) The system [A, C, C0; B,D,D0] is stabilizable, and [A +

G, C0; B,D0] is stabilizable.
(A6) Q ≥ 0, R > 0, [A, C, C0;

√
Q ] is exactly detectable, and

[A + G, C0;
√
Q (I − Γ )] is exactly detectable.

Similar to Theorem 2.1, we have the following result.

heorem 3.1. Assume (A2), (A5)–(A6) hold. Then for a sufficiently
arge N, (P2) has an optimal control ǔ ∈ Uc such that x̌i, i ≥ 1 in
2
F (0,∞;RNn) if and only if the following equation system admits a
et of solutions (x̌i, pi, {β

j
i }

N
j=0, i ≥ 1) in L2F (0,∞;RN(N+3)n):

dx̌i =
(
Ax̌i + Bǔi + Gx̌(N)

+ f
)
dt + (Cx̌i + Dǔi + σ )dWi

+ (C0x̌i + D0ǔi + σ0)dW0, x̌i(0) = xi0,

dpi = −
(
ATpi + GTp(N)

+ CT
0 β

0
i + CTβ i

i

)
dt

−
(
Q x̌i − QΓ x̌(N)

− η̄
)
dt +

N∑
j=0

β
j
idWj,

here the optimal control ǔi (i = 1, . . . ,N) satisfies

ǔi + BTpi + DTβ i
i + DT

0β
0
i = 0.

roof. (Sufficiency). The proof is similar to that of Theorem 2.1.
Necessity). Since x̌i ∈ L2F (0,∞;Rn), we have E

∫
∞

0 |x̌(N)
|
2dt ≤

1
N

∑N
i=1 E

∫
∞

0 |x̌i|2dt < ∞. Based on a similar derivation as in
ection 2.1, we only need to prove pi ∈ L2F (0,∞;Rn). Let pi =

N x̌i + KN x̌(N)
+ ϕN . Similarly, we have that PN , KN , ϕN satisfy

TPN + PNA + CT (
PN +

KN

N

)
C + Q

+ CT
0 PNC0 − Ψ T

NΥ
−1
N ΨN = 0, (31)

A + G)TKN + KN (A + G) + CT
0 KNC0 + GTPN

+ PNG − (ΨN +ΘN )T (ΥN + DT
0KND0)−1(ΨN +ΘN )

+ Ψ T
NΥ

−1
N ΨN − QΓ = 0, (32)

ϕN = −

{
[A + G − B(ΥN + DT

0KND)−1(ΨN +ΘN )]TϕN

+ [C − D(ΥN + DT
0KND0)−1(ΨN +ΘN )]T

× (PN +
1
N
KN )σ + [C0 − D0(ΥN + DT

0KND0)−1

× (ΨN +ΘN )]T [(PN + KN )σ0 + γN ]

+ (PN + KN )f − η̄

}
dt + γNdW0. (33)

et ΠN = PN + KN . Then ΠN satisfies

A + G)TΠN +ΠN (A + G) + Q − QΓ

+ CT
0

(
ΠN +

KN

N

)
C0 + CTPNC

− (ΨN +ΘN )T Ῡ −1
N (ΨN +ΘN ) = 0. (34)

rom (A5)–(A6) and the continuous dependence of the solution
n the parameter (see e.g. Freiling, Jank, Lee, and Abou-Kandil
1996)), for a sufficiently large N , (31) and (34) admit solu-
ions such that [A + G − BῩ −1

N (ΨN + ΘN ), C0 − D0Ῡ
−1
N (ΨN +

N )] is stable. By Sun and Yong (2018, Lemma 2.5), (33) admits
unique solution ϕN ∈ L2F (0,∞;Rn). Thus, we obtain pi ∈

2 (0,∞;Rn). □
F
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Based on the above discussion, we may construct the following
decentralized control laws for Problem (P2):

ûi = − Υ −1Ψ (xi − x̄) − Ῡ −1
[(Ψ +Θ)x̄ + ψ],

t ≥ 0, i = 1, . . . ,N,
(35)

where

Υ = R + DTPD + DT
0PD0,

Ῡ = R + DTPD + DT
0ΠD0,

Ψ = BTP + DTPC + DT
0PC0,

Θ = BT (Π − P) + DT
0(Π − P)C0,

ψ = DTPσ + DT
0Πσ0 + BTϕ + DT

0γ .

In the above, P and Π satisfy

ATP + PA + CTPC + CT
0 PC0 + Q − Ψ TΥ −1Ψ = 0, (36)

(A + G)TΠ +Π (A + G) − (Ψ +Θ)T Ῡ −1(Ψ +Θ)

+ CT
0ΠC0 + CTPC + Q − QΓ = 0, (37)

and ϕ, γ , x̄ ∈ L2F ([0,∞),Rn) are determined by

dϕ = −

{
[A + G − BῩ −1(Ψ +Θ)]Tϕ +Π f

+ [C0 − D0Ῡ
−1(Ψ +Θ)]T (Πσ0 + γ )

+ [C − DῩ −1(Ψ +Θ)]TPσ − η̄

}
dt + γ dW0, (38)

dx̄ =
{
[A + G − BῩ −1(Ψ +Θ)]x̄ − BῩ −1ψ + f

}
dt

+
{
[C0 − D0Ῡ

−1(Ψ +Θ)]x̄ − D0Ῡ
−1ψ + σ0

}
dW0,

x̄(0) = x̄0. (39)

Here, (38) is a backward SDE and (ϕ, γ ) is its solution.

Lemma 3.1. Assume (A2), (A5)–(A6) hold. Then we have
(i) Eq. (36) admits a unique solution P ≥ 0 such that [Ā, C̄, C̄0]

is mean-square stable.
(ii) Eq. (37) admits a unique solution Π ≥ 0 such that [A + G −

BῩ −1(Ψ +Θ), C0 − D0Ῡ
−1(Ψ +Θ)] is mean square stable;

(iii) (38)–(39) have a solution ϕ, x̄ ∈ L2F0 (0,∞;Rn).

Proof. From (A5)–(A6), we obtain that (36) admits a unique
solution P ≥ 0 such that [Ā, C̄, C̄0] is mean-square stable (i.e., P is
a stabilizing solution; see e.g., Rami, Chen, Moore, & Zhou, 2001;
Zhang et al., 2008). Note that [A + G, C0; (CTPC + Q − QΓ )1/2] is
exactly detectable. It follows that (37) admits a unique stabilizing
solution Π ≥ 0. By Sun and Yong (2018, Lemma 2.5), (38) admits
a unique solution ϕ ∈ L2F0 (0,∞;Rn). It is straightforward that
x̄ ∈ L2F0 (0,∞;Rn). □

For further analysis, we introduce the following assumption.
We will show that this assumption is also necessary for the
uniform stability of closed-loop systems.

(A7) [Ā + G, C̄0] is mean-square stable, where Ā and C̄0 are
given by (19).

We now show that the closed-loop system under decentral-
ized control (17) is uniformly mean-square stable.

Theorem 3.2. Assume that (A2), (A5)–(A7) hold. Then there exist
an integer N0 and a constant c such that N > N0 the following hold:

max
1≤i≤N

E
∫

∞

0

(
|x̂i(t)|2 + |ûi(t)|2

)
dt < c, (40)

E
∫

∞

0
|x̂(N)(t) − x̄(t)|2dt = O(

1
N
). (41)

roof. See Appendix E. □
7

Remark 3.1. Due to the appearance of common noise, the mean-
square approximation error between population state average
x̂(N) and aggregate effect x̄ relies on the states of all agents while
the second moment of the state x̂i conversely depends on the
pproximation error x̂(N)

− x̄. Thus, we need to analyze jointly
ˆ(N)

− x̄ and x̂i, i = 1, . . . ,N . By tackling the relevant integral
nequalities, we obtain the uniform stabilization of the systems
nd the consistency of MF approximation.

We now give two equivalent conditions for uniform stabiliza-
ion of all the subsystems.

heorem 3.3. Let (A6) hold. Assume that (36)–(37) have symmetric
olutions. Then for (P2) the following statements are equivalent:

(i) For any initial condition (x̂1(0), . . . , x̂N (0)) satisfying (A2), the
ollowing holds,
N∑
i=1

E
∫

∞

0

(
|x̂i(t)|2 + |ûi(t)|2

)
dt < ∞; (42)

(ii) (36) and (37) admit unique solutions such that P ≥ 0,Π ≥

, and [Ā + G, C̄0] is stable;
(iii) (A5) and (A7) hold.

roof. See Appendix E. □

We now state the asymptotic optimality of the decentralized
ontrol.

heorem 3.4. Assume (A2), (A5)–(A7) hold. For Problem (P2),
he set of decentralized strategies {û1, . . . , ûN} given by (35) has
symptotic social optimality, i.e.,
1
N
Jsoc(û) −

1
N

inf
u∈L2F (0,∞;Rnr )

Jsoc(u)
⏐⏐⏐ = O(

1
√
N
).

Proof. By a similar argument to the proof of Theorem 2.2 with
Theorem 3.2, the conclusion follows. □

4. Numerical example

In this section, two examples are given to illustrate the effec-
tiveness of the proposed decentralized control.

Example 4.1. Consider a scalar system with 30 agents in Problem
(P2). For the system (1) and (28), take A = −1, B = C = D =

0 = D0 = G = R = Γ = 1,Q = 0.5, f (t) = e−2t , σ (t) =

σ0(t) = 0 and η(t) =
1

1+t2
. The initial states of 30 agents are

aken independently from a normal distribution N(10, 1). Note
that B = D = D0 ̸= 0. Both systems [A, C, C0; B,D,D0] and [A +

, C0; B,D0] are mean-square stabilizable necessarily. Besides, it
can be verified that [Ā + G, C̄0] = [−0.5598, 0.4402] is mean-
square stable. We obtain that (A2), (A5)–(A7) hold. Under the
control law (35), the state trajectories of agents are shown in
Fig. 1. It appears that after the transient phase, all the states of
agents reach the agreement and converge to 0 gradually.

The trajectories of x̄ and x̂(N) in (P2) are shown in Fig. 2. It
can be seen that x̄ and x̂(N) coincide well, which illustrate the
consistency of MF approximations.

Example 4.2. We now consider the model in Example 4.1 where
A = 1,G = −0.8, R = −0.1, and the other parameters are
the same as above. Then we have P = 0.5 and Π = −0.0648.
However, it can be verified that [Ā, C̄, C̄0], [A + G − BῩ −1(Ψ +

Θ), C0 −D0Ῡ
−1(Ψ +Θ)] and [Ā+G, C̄0] are mean-square stable.

From Fig. 3, it can seen that curves of x̄ and x̂(N) still coincide well.
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Fig. 1. Curves of 30 agents.

Fig. 2. Curves of x̄ and x̂(N) .

Fig. 3. Curves of x̄ and x̂(N) .

5. Concluding remarks

In this paper, we have considered uniform stabilization and
social optimality for MF-LQ systems with common noise. By
tackling coupled high-dimensional FBSDEs, we design the de-
centralized control laws for finite-horizon and infinite-horizon
problems, respectively, and then show their asymptotical social
optimality. The necessary and sufficient conditions are given for
uniform stabilization of all the subsystems.

An interesting generalization is to consider MF Stackelberg
games with common noise. In this situation, the resulting FBSDEs
are more complicated. How to obtain nonconservative conditions
to ensure the solvability of FBSDEs is worthy of further study.
Besides, it also deserves investigating further for applications in
8

economics, smart grids and etc. (Guéant et al., 2011; Jiang, Jia, &
Guan, 2022).
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Appendix A. Proof of Theorem 2.1

Proof. Suppose that ǔi is a candidate of the optimal control of
Problem (P1). Denote by x̌i the state of agent i under the control
ǔi. For any vi ∈ L2F (0, T ;Rr ) and λ ∈ R(λ ̸= 0), let úi =

ǔi+λvi. Denote by x́i the solution of the following perturbed state
equation

dx́i =

[
Ax́i + B(ǔi + λvi) +

G
N

N∑
i=1

x́i + f
]
dt + [Cx́i

+ D(ǔi + λvi) + σ ]dWi + [C0x́i + D0(ǔi + λvi)
+ σ0]dW0, x́i(0) = xi0, i = 1, 2, . . . ,N.

Let yi = (x́i − x̌i)/λ. It can be verified that yi satisfies

dyi = [Ayi + Gy(N)
+ Bvi]dt + (Cyi + Dvi)dWi

+ (C0yi + D0vi)dW0, yi(0) = 0.

et {pi, β
j
i , i = 1, . . . ,N, j = 0, 1, . . . ,N} be a set of solutions to

(3). Then by Itô’s formula,
N∑
i=1

E[⟨pi(T ), yi(T )⟩]

=

N∑
i=1

E
∫ T

0

[
⟨−(Q x̌i − QΓ x̌(N)

− η̄), yi⟩

+ ⟨BTpi + DTβ i
i + DT

0β
i
i , vi⟩

]
dt. (A.1)

rom (2), we have
F
soc(ú) − JFsoc(ǔ) = 2λI1 + λ2I2 (A.2)

here ǔ = (ǔ1, . . . , ǔN ), and

1
∆
=

N∑
i=1

E
{ ∫ T

0

[ ⟨
Q

(
x̌i − (Γ x̌(N)

+ η)
)
, yi − Γ y(N)⟩

+ ⟨Rǔi, vi⟩
]
dt +

⟨
H

(
x̌i(T ) − (Γ0x̌(N)(T ) + η0)

)
,

yi(T ) − Γ0y(N)(T )
⟩ }
,

2
∆
=

N∑
i=1

E
{ ∫ T

0

( ⏐⏐yi − Γ y(N)
⏐⏐2
Q + |vi|

2
R

)
dt

+ |yi(T ) − Γ0y(N)(T )|2H
}
.

direct calculation with (A.1) gives

1 =

N∑
E

∫ T ⟨
Rǔi + BTpi + DTβ i

i + DT
0β

0
i , vi

⟩
dt.
i=1 0
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y Lim and Zhou (1999) and Huang and Huang (2017), I2 ≥ 0
equals that (P1) is convex. From a similar argument in Wang et al.
(2020), ǔ = (ǔ1, . . . , ǔN ) is an optimal control of (P1) if and only
if (P1) is convex and FBSDE (3) admits a solution (x̌i, pi, β

j
i , i, j =

1, . . . ,N).
If Problem (P1) is uniformly convex, by Yong and Zhou (1999)

and Sun et al. (2016), (P1) admits a unique optimal control. □

Appendix B. Proof of Theorem 2.2

To prove Theorem 2.2, we need some lemmas. Consider the
linear SDEs

dzi(t) = [A(t)zi(t) + G(t)z(N)(t) + b(t)]dt
+ [C(t)zi(t) + σ (t)]dWi(t) + [C0(t)zi(t)

+ σ0(t)]dW0(t), zi(0) = zi0, 1 ≤ i ≤ N. (B.1)

Lemma B.1. Suppose that A, G, C and C0 are bounded, and
b, σ , σ0 ∈ L2F (0, T ;Rn). Then (B.1) admits a unique solution zi ∈

L2F (0, T ;Rn). Particularly, there exists a constant c, such that

sup
0≤t≤T

N∑
i=1

E
[

|zi(t)|2
]
≤ Nc

[
max
1≤i≤N

E|zi0|2

+ E
∫ T

0

[
|b(s)|2 + |σ (s)|2 + |σ0(s)|2

]
ds

]
.

Proof. By a similar argument in Yong and Zhou (1999, Theorem
6.3), we obtain

E
[

|zi(t)|2
]
≤ c0E

[
|zi0|2 +

∫ t

0
|z(N)(s)|2ds

+

∫ t

0

[
|b(s)|2 + |σ (s)|2 + |σ0(s)|2

]
ds

]
≤

c
N

∫ t

0

N∑
i=1

E|zi(s)|2ds + c0h(t),

here

(t) ∆
= max

1≤i≤N
E|zi0|2 + E

∫ T

0

[
|b(s)|2 + |σ (s)|2 + |σ0(s)|2

]
ds.

his further implies
N

i=1

E|zi(t)|2 ≤ c0

∫ t

0

N∑
i=1

E|zi(s)|2ds + Nc0h(t).

y Gronwall’s inequality, we have
∑N

i=1 E|zi(t)|2 ≤ Nc0ec1th(t).
et c = c0ec1T . The lemma follows. □

emma B.2. Let (A1)–(A4) hold. Under the control (17), the
ollowing holds:

sup
≤t≤T

N∑
i=1

E|x̂i(t)|2 ≤ Nc.

roof. Since ψ, f , σ0 ∈ L2F (0, T ;Rn), by (16) and Lemma B.1,
we have sup0≤t≤T E|x̄(t)|2 ≤ c . From Lemma B.1 we obtain
sup0≤t≤T

∑N
i=1 E|x̂i|2 ≤ c. □

Lemma B.3. Let (A1)–(A4) hold. Under the control (17), the
ollowing holds:

max E|x̂(N)(t) − x̄(t)|2 = O(1/N).

≤t≤T

9

Proof. Denote

f̄ ∆
= B[Υ −1Ψ − Ῡ −1(Ψ +Θ)]x̄ − BῩ −1ψ + f ,

σ̄
∆
=D[Υ −1Ψ − Ῡ −1(Ψ +Θ)]x̄ − DῩ −1ψ + σ ,

¯0
∆
=D0[Υ

−1Ψ − Ῡ −1(Ψ +Θ)]x̄ − D0Ῡ
−1ψ + σ0.

et ζ (t) = x̂(N)(t) − x̄(t). It follows by (18) that

x̂(N)(t) =
[
(Ā(t) + G(t))x̂(N)(t) + f̄ (t)

]
dt

+
1
N

N∑
i=1

[C̄(t)x̂i(t) + σ̄ (t)]dWi(t)

+ [C̄0(t)x̂(N)(t) + σ̄0(t)]dW0(t).

From this and (16), we have

dζ (t) = [Ā(t) + G(t)]ζ (t)dt

+
1
N

N∑
i=1

[C̄(t)x̂i(t) + σ̄ (t)]dWi(t)

+ C̄0ζ (t)dW0(t), ζ (0) = x̂(N)(0) − x̄0.

By (A2) and Lemma B.1, one can obtain

sup
0≤t≤T

E
⏐⏐x̂(N)(t) − x̄(t)

⏐⏐2 = sup
0≤t≤T

E|ζ (t)|2

cE
{
E
⏐⏐x̂(N)(0) − x̄0

⏐⏐2
+ E

⏐⏐⏐ 1
N

N∑
i=1

∫ T

0
[C̄(t)x̂i(t) + σ̄ (t)]dWi

⏐⏐⏐2 }
≤

c
N

{
max
1≤i≤N

E|x̂i0|2 +
1
N

N∑
i=1

E
∫ T

0
|C̄(t)x̂i(t) + σ̄ (t)|2dt

}
≤

c
N

{
max
1≤i≤N

E|x̂i0|2 + max
1≤i≤N

E
∫ T

0
|C̄(t)x̂i(t) + σ̄ (t)|2dt

}
.

y Lemma B.2, the proof is completed. □

roof of Theorem 2.2. We first prove that for u ∈ Uc , JFsoc(u) < ∞

mplies E
∫ T
0 (|xi|2 + |ui|

2)dt < ∞, for all i = 1, . . . ,N . By (A3)
nd Wang et al. (2020, Proposition 3.1), we have

0

N∑
i=1

E
∫ T

0
|ui(t)|2dt − c ≤ JFsoc(u) < ∞,

which implies
∑N

i=1 E
∫ T
0 |ui(t)|2dt < c1. By Lemma B.1 and (1),

we have
N∑
i=1

E
∫ T

0
|xi(t)|2dt ≤ Nc. (B.2)

Denote x̃i = xi − x̂i, ũi = ui − ûi and x̃(N)
=

1
N

∑N
i=1 x̃i. Then∫ T

0

(
|x̃i|2 + |ũi|

2 )
dt < ∞. (B.3)

t follows from (1) and (18) that

x̃i = (Ax̃i + Gx̃(N)
+ Bũi)dt + (Cx̃i + Dũi)dWi

+ (C0x̃i + D0ũi)dW0, x̃i(0) = 0.
(B.4)

e have JFsoc(u) =
∑N

i=1(J
F
i (û) + J̃Fi (ũ) + Ii), where

˜F
i (ũ)

∆
=E

∫ T

0

[
|x̃i − Γ x̃(N)

|
2
Q + |ũi|

2
R

]
dt

+ E|x̃i(T ) − Γ0x̃(N)(T )|2H ,
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u

P

=

L

E

B
F

d

=

nd

i
∆
= 2E

∫ T

0

[ (
x̂i − Γ x̂(N)

− η
)TQ (

x̃i − Γ x̃(N) )
+ûT

i Rũi

]
dt

+ 2E
[(
x̂i(T ) − (Γ0x̂(N)(T ) + η0)

)T
× H(x̃i(T ) − Γ0x̃(N)(T ))

]
.

By (A3) together with Lim and Zhou (1999, Lemma 1),
∑N

i=1 J̃
F
i (ũ)

≥ 0. We only need to prove 1
N

∑N
i=1 Ii = O( 1

√
N
). Note that

N

i=1

Ii =

N∑
i=1

2E
∫ T

0

[
x̃Ti

(
Q x̂i − QΓ x̄ − η̄

)
+

N∑
i=1

ûT
i Rũi

]
dt

−

N∑
i=1

2
(
E

∫ T

0
(x̂(N)

− x̄)TQΓ x̃idt

+ E
[
x̃Ti (T )HΓ0 (x̂

(N)(T ) − x̄(T ))
])

+ 2
N∑
i=1

E
[
x̃Ti (T )

(
Hx̂i(T ) − HΓ0 x̄(T ) − η̄0

)]
.

(B.5)

et p̂i = Px̂i + Kx̄ + ϕ. By (9)–(11) and Itô’s formula, we obtain

dp̂i = − [AT p̂i + GT p̂(N)
+ CT

0 β̂
0
i + CT β̂ i

i + Q x̂i − QΓ x̄

− η̄]dt + (GTP + PG)(x̂(N)
− x̄)dt + β̂0

i dW0

+ β̂ i
idWi, p̂i(T ) = Hx̂i(T ) − HΓ0 x̄(T ) − η̄0, (B.6)

where β̂ i
i = P(Cx̂i + Dûi + σ ), ū = −Ῡ −1(Ψ +Θ)x̄, and

β̂0
i = P(C0x̂i + D0ûi + σ0) + K (C0x̄ + D0ū + σ0)

+Λx̂i + Lx̄ + γ .

Note that by (17), Rûi = −(Bp̂i + D0β̂
0
i + Dβ̂ i

i ). From (B.4) and
(B.6), we obtain

N∑
i=1

E
[
x̃Ti (T )(Hx̂i(T ) − HΓ0 x̄(T ) − η̄0)

]
=E

∫ T

0

N∑
i=1

{
−x̃Ti

[
Q x̂i − QΓ x̄ − η̄

]
−ûT

i Rũi

}
dt

+ NE
∫ T

0
(x̂(N)

− x̄)T (GTP + PG)x̃(N)dt.

From this and (B.5), we obtain

1
N

N∑
i=1

Ii = 2E
∫ T

0
(x̂(N)

− x̄)T (GTP + PG − QΓ )x̃(N)dt

+ 2E
[
(x̂(N)(T ) − x̄(T ))THΓ0 x̃

(N)(T )
]
.

By Lemma B.3, (B.2) and (B.3), we obtain⏐⏐⏐ 1
N

N∑
i=1

Ii
⏐⏐⏐2 ≤ cE

∫ T

0
|x̂(N)

− x̄|2dt · E
∫ T

0
|x̃(N)

|
2dt

+ cE|x̂(N)(T ) − x̄(T )|2 · E|x̃(N)(T )|2,

which implies |
1
N

∑N
i=1 Ii| = O(1/

√
N). □

ppendix C. Proof of Theorem 2.3

To prove Theorem 2.3, we need two lemmas.
Denote EF0 (·)

∆
= E(·|F0

t ). Consider the (conditional) MF type
ystem

z = (Az + Bu + GE (z ) + f )dt + (Cz + Du + σ )dW
i i i F0 i i i i

10
+ (C0zi + D0ui + σ0)dW0, zi(0) = xi0, (C.1)

with the cost functional

Ji(ui) =E
∫ T

0
(|zi − Γ EF0 (zi) − η|2Q + |ui|

2
R)dt

+ E|zi(T ) − Γ0EF0 (zi(T )) − η0|
2
H .

(C.2)

he admissible control set is given by

i =

{
ui

⏐⏐ ui(t) is adapted to σ (zi(0),Wi(0),W0(s),

0 ≤ s ≤ t),E
∫ T

0
|ui(t)|2dt < ∞

}
.

emma C.1. Assume (A1)–(A4) hold. For the system (C.1)–(C.2),
he optimal control is given by

ˆ i = −Υ −1Ψ
[
zi−EF0 (zi)

]
−Ῡ −1 [

(Ψ +Θ)EF0 (zi)+ψ
]
, (C.3)

nd the optimal cost is

inf
i∈Ui

Ji(ui) =E
[
(xi0 − x̄0)TP(xi0 − x̄0) + x̄T0Π x̄0

+ 2ϕT (0)x̄0
]

+qT .

roof. The proof is similar to Theorem 2.6 of Graber (2016). □

After applying the control (C.3) into (C.1), we have

dẑi (C.4){
Āẑi + GEF0 (ẑi) + B[Υ −1Ψ − Ῡ −1(Ψ +Θ)]EF0 (ẑi)

− BῩ −1ψ + f
}
dt +

{
C̄ ẑi + D[Υ −1Ψ − Ῡ −1(Ψ

+Θ)]EF0 (ẑi) − DῩ −1ψ + σ
}
dWi +

{
C̄0ẑi

+ D0[Υ
−1Ψ − Ῡ −1(Ψ +Θ)]EF0 (ẑi)

− D0Ῡ
−1ψ + σ0

}
dW0. (C.5)

emma C.2. Assume that (A1)–(A4) hold. Then∫ T

0
|x̂i − ẑi|2dt = O

( 1
N

)
.

Proof. From (C.4),

dEF0 (ẑi) =
{[

A + G − BῩ −1(Ψ +Θ)
]
EF0 (ẑi) − BῩ −1ψ

+ f
}
dt +

{
[C0 − D0Ῡ

−1(Ψ +Θ)]EF0 (ẑi)

− D0Ῡ
−1ψ + σ0

}
dW0.

y comparing (C.4) with (16), we can verify that EF0 (ẑi) = x̄0.
rom (18),

(x̂i − ẑi) = Ā(x̂i − ẑi)dt + G(x̂(N)
− EF0 (ẑi))dt

+ C̄(x̂i − ẑi)dWi + C̄0(x̂i − ẑi)dW0.

This gives

x̂i(t) − ẑi(t) =

∫ t

0
Φi(t − τ )G(τ )[x̂(N)(τ ) − EF0 (ẑi)(τ )]dτ ,

where Φi satisfies

dΦi(t) = Ā(t)Φi(t)dt + C̄(t)Φi(t)dWi

+ C̄0(t)Φi(t)dW0, Φi(0) = I.

By Schwarz’s inequality and Lemma B.3,

max
0≤t≤T

E|x̂i(t) − ẑi(t)|2dt

max E
⏐⏐⏐ ∫ t

Φi(t − τ )G[x̂(N)(τ ) − EF0 (ẑi(τ ))]dτ
⏐⏐⏐2dt
0≤t≤T 0
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P
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≤E
∫ T

0

⏐⏐Φi(T − τ )|2dτE
∫ T

0

⏐⏐G(x̂(N)(τ ) − EF0 (ẑi)(τ ))
⏐⏐2dτ

≤ cE
∫ T

0

⏐⏐x̂(N)(τ ) − EF0 (ẑi)(τ )
⏐⏐2dτ = O(

1
N
). □

roof of Theorem 2.3. Note that EF0 (ẑi) = x̄. We have

1
N
JFsoc(û) =

1
N

N∑
i=1

E
∫ T

0

[ ⏐⏐x̂i − (Γ x̂(N)
+ η)

⏐⏐2
Q

+
⏐⏐Υ −1Ψ (x̂i − x̄) + Ῡ −1 [

(Ψ +Θ)x̄ + ψ
] ⏐⏐2

R

]
dt

=
1
N

N∑
i=1

E
∫ T

0

[ ⏐⏐ẑi − [Γ EF0 (ẑi) + η] + x̂i − ẑi

+Γ x̂(N)
− Γ EF0 (ẑi)

⏐⏐2
Q +

⏐⏐Υ −1Ψ
[
x̂i − ẑi + ẑi

−EF0 (ẑi)
]

+Ῡ −1 [
(Ψ +Θ)EF0 (ẑi) + ψ

] ⏐⏐2
R

]
dt.

Note that Jsoc(û)
∆
=

∑N
i=1 Ji(û) = NJi(û). By Schwarz’s inequality,

and Lemma C.2,⏐⏐⏐ 1
N
JFsoc(û) −

1
N
Jsoc(û)

⏐⏐⏐ =
1
N

N∑
i=1

E
∫ T

0

[
|x̂i − ẑi|2Q

+ |Γ (x̂(N)
− EF0 (ẑi))|2Q

]
dt +

c2
N

N∑
i=1

(
E

∫ T

0
|x̂i − ẑi|2Q dt

)1/2

+
c2
N

N∑
i=1

(∫ T

0
|Γ (x̂(N)

− EF0 (ẑi))|2Q dt
)1/2

= O(1/
√
N).

Letting N → ∞, by Lemma C.1, the theorem follows. □

Appendix D. Proofs of Proposition 2.2 and Theorem 2.4

Proof of Proposition 2.2. Denote by x∗

i the corresponding state
under the control u∗

i , i = 1, . . . ,N . Let δui = ui −u∗

i , δxi = xi − x∗

i
nd δx(N)

=
1
N

∑N
i=1 δxi, Assume u∗

i , ui ∈ U ′

d. Denote by δJFsoc the
variation of JFsoc with δui. Then we have

δJFsoc

=

N∑
i=1

E
{ ∫ T

0

[ ⟨
Q

(
x∗

i − (Γ x(N)
∗

+ η)
)
, δxi − Γ δx(N)⟩

+ ⟨Ru∗

i , δui⟩
]
dt+

⟨
H

(
x∗

i (T ) − (Γ0x(N)
∗

(T ) + η0)
)
,

δxi(T ) − Γ0δx(N)(T )
⟩}
.

(D.1)

Let {p∗

i , β
j,∗
i , i = 1, . . . ,N, j = 0, 1, . . . ,N} be a solution to the

second equation in (20). By Itô’s formula,
N∑
i=1

E[⟨pi(T )∗, δxi(T )⟩]

=

N∑
i=1

E
∫ T

0

[
⟨−

[
Qx∗

i − QΓ x(N)
∗

− η̄ + GTp(N)
∗

]
, δxi⟩

+ ⟨BTp∗

i + DTβ
i,∗
i + DT

0β
i,∗
i , δui⟩

]
dt. (D.2)

From (D.1) and (D.2), we obtain

δJFsoc =

N∑
E

∫ T ⟨
Ru∗

i + BTp∗

i + DTβ
i,∗
i + DT

0β
i,∗
0 , δui

⟩
dt.
i=1 0
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Note that u∗

i , δui ∈ Hi
t . By the smoothing property of conditional

mathematical expectation,

δJFsoc = E
∫ T

0

⟨
Ru∗

i + BTp∗

i + DTβ
i,∗
i + DT

0β
i,∗
0 , δui

⟩
dt

= E
∫ T

0

⟨
Ru∗

i + E[BTp∗

i + DTβ
i,∗
i + DT

0β
0,∗
i |Hi

t ], δui

⟩
dt.

(D.3)

Since (P1′) is convex, by standard variation principle {u∗

i , i =

1, . . . ,N} is an optimal control of (P1′) if and only if δJFsoc = 0.
From (D.3), δJFsoc = 0 is equivalent to u∗

i = −R−1E[BTp∗

i +DTβ
i,∗
i +

DT
0β

0,∗
i |Hi

t ]. □

Proof of Theorem 2.4. Let EHi [p∗

i ] = P∗

Nx
∗

i + K ∗

NEF0 [x∗

i ] +

ϕ∗

N , where P∗

N , K
∗

N ∈ Rn×n and ϕ∗

N satisfies dϕ∗

N = ϕ̌∗

Ndt +

γ ∗

NdW0, ϕ
∗

N (T ) = −η̄0. By Itô’s formula, we obtain

dEHi [p∗

i ] = Ṗ∗

Nx
∗

i dt + P∗

N

[
(Ax∗

i + Bǔ∗

i + f )dt

+ (Cx∗

i + Du∗

i + σ )dWi + (C0x∗

i + D0u∗

i + σ0)dW0
]

+ K̇ ∗

NE[x∗

i ]
]
dt + K ∗

N

[(
AEF0 [x∗

i ] + BEF0 [u∗

i ] + f
)
dt

+
(
C0EF0 [x∗

i ] + D0EF0 [u∗

i ] + σ0
)
dW0

]
+ ϕ̌∗

Ndt + γ ∗

NdW0. (D.4)

y comparing this with (23), it follows that
0,∗
i = P∗

N (C0x∗

i + D0u∗

i + σ0) + γ ∗

N

+ K ∗

N

(
C0EF0 [x∗

i ] + D0EF0 [u∗

i ] + σ0
)
,

β
i,∗
i = P∗

N (Cx
∗

i + Du∗

i + σ ).

rom (21) and (22), we obtain

Υ̃N + DT
0K

∗

ND0)EF0 [u∗

i ] + (Ψ̃N + Φ̃N )EF0 [x∗

i ] + ψ∗

N = 0.

rom (D.4), we obtain that u∗

i , i = 1, . . . ,N satisfy (24), and
∗

N , K
∗

N and ϕ∗

N satisfy (25)–(27), respectively. □

ppendix E. Proofs of Theorems 3.2 and 3.3

roof of Theorem 3.2. After (35) is applied, we have

x̂i =
(
Āx̂i + Gx̂(N)

+ f̄
)
dt + (C̄ x̂i + σ̄ )dWi

+ (C̄0x̂i + σ̄0)dW0, (E.1)

here f̄ = B[Υ −1Ψ − Ῡ −1(Ψ +Θ)]x̄−BῩ −1ψ+ f , σ̄=D[Υ −1Ψ −

¯ −1(Ψ+Θ)]x̄−DῩ −1ψ+σ , and σ̄0=D0[Υ
−1Ψ−Ῡ −1(Ψ+Θ)]x̄−

0Ῡ
−1ψ + σ0. From (18) and (39), we have

ζ (t) = (Ā + G)ζ (t)dt +
1
N

N∑
i=1

(C̄ x̂i(t) + σ̄ )dWi(t)

+ C̄0ζ (t)dW0(t), ζ (0) = x(N)(0) − x̄0,

(E.2)

where ζ = x̂(N)
− x̄. Let P̄ satisfy

¯ (Ā + G) + (Ā + G)T P̄ + C̄T
0 P̄ C̄0 = −I.

From (A5)–(A6), there exists a constant c such that P > 0. By Itô’s
formula, we have

E[ζ T (T )P̄ζ (T ) − ζ T (0)P̄ζ (0)]

E
[ ∫ T

0
ζ T (t)[P̄(Ā + G) + (Ā + G)T P̄ + C̄T

0 P̄ C̄0]ζ (t)dt

+
1
N2

N∑
i=1

∫ T

0
(C̄ x̂i + σ̄ )T P̄(C̄ x̂i + σ̄ )dt

]
≤ − E

∫ T

ζ T (t)ζ (t)dt +
1 [

c1 max E
∫ T

|x̂i(t)|2¯dt + c1
]

0 N 1≤i≤N 0
P
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w

E

L

P

F

≤

T
f

E

w

d

B
D

w

d

hich gives∫ T

0
ζ T (t)ζ (t)dt ≤

1
N

[
c2 max

1≤i≤N
E

∫ T

0
|x̂i(t)|2dt + c2

]
. (E.3)

et P satisfy

Ā + ĀTP + C̄TPC̄ + C̄T
0 PC̄0 = −2I.

rom (A5)–(A6), we have P > 0. By Itô’s formula, we obtain

E
[
x̂Ti (T )Px̂i(T ) − x̂Ti (0)Px̂i(0)

]
≤E

[ ∫ T

0

[
x̂Ti (PĀ + ĀTP + C̄TPC̄ + C̄T

0 PC̄0)x̂i

+ x̂(N)(PG + GTP)x̂(N)
+ σ̄ TP σ̄ + σ̄ T

0 P σ̄0

+ 2x̂Ti (Pf̄ + C̄TP σ̄ + C̄T
0 P σ̄0)

]
dt

]
− E

[ ∫ T

0
(x̂Ti x̂i)dt

]
+αT , a.s.,

where

αT = E
[ ∫ T

0

[
x̂(N)(PG + GTP)x̂(N)

+ σ̄ TP σ̄

+ |Pf̄ + C̄TP σ̄ + C̄T
0 P σ̄0|

2
+ σ̄ T

0 P σ̄0
]
dt

]
.

his implies E
[ ∫ T

0 |x̂i|2dt
]
≤ E[xTi0Pxi0] + αT , which with (E.3)

urther gives∫ T

0
|x̂i(t)|2dt ≤ c3E

∫ T

0
|x̂(N)(t)|2dt + c3

≤ 2c3E
∫ T

0

(
|x̄(t)|2 + |ζ (t)|2

)
dt + c3

≤ 2c3
[
E

∫ T

0
|x̄(t)|2dt +

c2
N

max
1≤i≤N

E
∫ T

0
|x̂i(t)|2dt

]
+c4.

Thus, there exists an integer N0 such that N > N0, the following
holds:

max
1≤i≤N

E
∫ T

0
|x̂i(t)|2dt ≤ 2c5E

∫ T

0
|x̄(t)|2dt + c6.

Note x̄ ∈ L2F ([0,∞),Rn). It follows that

max
1≤i≤N

E
∫

∞

0
|x̂i(t)|2dt ≤ c.

This together with (E.3) gives (41). □

Proof of Theorem 3.3. (iii)⇒(i) has been given in Theorem 3.2.
We now show (i)⇒(ii). By (E.1),

dEF0 (x̂i)
dt

=
[
ĀEF0 (x̂i) + GEF0 (x̂(N)) + f̄

]
dt

+
[
C̄0EF0 (x̂i) + σ̄0

]
dW0, EF0 (x̂i(0)) = x̄0.

(E.4)

It follows from (A2) that

EF0 (x̂i) = EF0 (x̂j) = EF0 (x̂(N)), j ̸= i.

By comparing (E.4) with (39), we obtain EF0 (x̂i) = x̄. Note that

E[|x̄|2] = E
[
EF0 (x̂i)2

]
= E

{⏐⏐E[x̂i|F0
t ]

⏐⏐2}
≤ E

{
E[|x̂i|2|F0

t ]
}

= E[|x̂i|2].

It follows from (42) that

E
∫

∞

|x̄(t)|2dt < ∞. (E.5)

0
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By (39), we have

x̄(t) =Φ0(t)
[
x̄0 +

∫ t

0
Φ−1

0 (τ )h(τ )dτ

+

∫ t

0
Φ−1

0 (τ )(σ0(τ ) − D0Ῡ
−1ψ(τ ))dW0(τ )

]
,

here h = f − BῩ −1ψ − C0(σ0 − D0Ῡ
−1ψ), and Φ0 satisfies

Φ0 = (A + G − BῩ −1(Ψ +Θ))Φ0dt

+ (C0 − D0Ῡ
−1(Ψ +Θ))Φ0dW0, Φ0(0) = I.

y the arbitrariness of x̄0 and (E.5), we obtain that [A + G, B; C0,

0] is stabilizable. Note that E[x(N)
]
2

≤
1
N

∑N
i=1 E[x̂2i ]. Then from

(42) we have

E
∫

∞

0

⏐⏐x̂(N)(t)
⏐⏐2dt < ∞. (E.6)

This leads to E
∫

∞

0 |Gx̂(N)
+ f̄ |2dt < ∞. By (E.1), we obtain

E|x̂i(t)|2

=E
⏐⏐⏐Φi(t)

(
xi0 +

∫ t

0
Φ−1

i (τ )[Gx(N)
+ f̄ − C̄ σ̄ − C̄0σ̄0]dt

+

∫ t

0
Φ−1

i (τ )σ̄dWi(τ ) +

∫ t

0
Φ−1

i (τ )σ̄0dW0(τ )
) ⏐⏐⏐2,

here Φi satisfies

Φi = ĀΦidt + C̄ΦidWi + C̄0ΦidW0, Φi(0) = I.

By (42) and the arbitrariness of xi0, we obtain that E
∫

∞

0 |Φi(t)|2 dt
< ∞, i.e., [A, C, C0; B,D,D0] is stabilizable. On the other hand,
from (E.5) and (E.6),

E
∫

∞

0

⏐⏐ζ (t)⏐⏐2dt = E
∫

∞

0

⏐⏐x̂(N)(t) − x̄(t)
⏐⏐2dt < ∞.

Noting that ζ (t) satisfies (E.2), we obtain that (A7) holds.
(ii)⇒(iii). By a similar argument in Zhang et al. (2019, 2008)

and Wang et al. (2020), we can show [A, C, C0; B,D,D0] is sta-
bilizable. Since Π ≥ 0, there exists an orthogonal U such that

UTΠU =

[
0 0
0 Π2

]
, where Π2 > 0. From (37),

(UT ĀU)TUTΠU + UTΠU(UT ĀU)

+ (UT C̄U)TUTΠU(UT C̄0U) + UTΞU = 0, (E.7)

where Ā = A + G − BΛ, C̄0 = C0 − D0Λ with Λ ∆
= Ῡ −1(Ψ +Φ),

and

Ξ = CTPC + Q − QΓ +ΛT (R + DTPD)Λ

− ΛTDTPC − (DTPC)TΛ.

Let Υ̂ = R + DTPD. Then, Ξ can be deformed into

Ξ = (Λ− Υ̂ −1DTPC)T Υ̂ (Λ− Υ̂ −1DTPC)

− CTPDΥ̂ −1DTPC + CTPC + Q − QΓ . (E.8)

Note that[
P PD

DTP R + DTPD

]
=

[
I 0
DT I

][
P 0
0 R

][
I D
0 I

]
.

Thus, we have
[

P PD
DTP R + DTPD

]
≥ 0. By Schur’s lemma (Rami

et al., 2001), P−PDΥ̂ −1DTP ≥ 0. This gives CT (P−PDΥ̂ −1DTP)C ≥

0. From (E.8), Ξ ≥ 0. By Zhang et al. (2008, Theorem 3.1) and
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A6), we obtain that (Ā, C̄0;Ξ
1/2) is exactly detectable. Denote

UT ĀU =

[
Ā11 Ā12
Ā21 Ā22

]
, UT C̄0U =

[
C̄0

11 C̄0
12

C̄0
21 C̄0

22

]
,

UTΞU =

[
Ξ11 Ξ12
Ξ21 Ξ22

]
.

By pre- and post-multiplying by ξ T and ξ where ξ = [ξ T1 , 0]
T ,

it follows that 0 = ξ TUTΞUξ . From the arbitrariness of ξ1, we
obtain Ξ11 = 0. Since Ξ is positive semi-definite, Ξ12 = Ξ21 = 0,
and Ξ22 ≥ 0. By comparing each block matrix of both sides of
(E.7), we obtain Ā21 = C̄0

21 = 0. It follows from (E.7) that

Π2Ā22 + ĀT
22Π2 + (C̄0

22)
TΠ2C̄0

22 +Ξ22 = 0. (E.9)

Let ν = [νT1 , ν
T
2 ]

T
= UT ȳ∗, where ȳ∗ satisfies ˙̄y∗

= Āȳ∗. Then,
we have

dν1 = (Ā11ν1 + Ā12ν2)dt + (C̄0
11ν1 + C̄0

12ν2)dW0,

dν2 = Ā22ν2dt + C̄0
22ν2dW0.

Note that UTΞU =

[
0 0
0 Ξ22

]
. Then, Ξ 1/2ȳ = Ξ 1/2Uν = 0,

hich together with the detectability of [Ā, C̄0;Ξ
1/2

] implies
1 → 0 and [Ā11, C̄0

11] is stable. We now prove [Ā22, C̄0
22]

s stable. Denote S(t) = νT2Π2ν2. By (E.9), S(T ) − S(0) =∫ T
0 ν2(t)

TΞ22ν2(t)dt ≤ 0, which implies limt→∞ S(t) exists. By
similar argument in Zhang et al. (2019, 2008) and Wang et al.

2020), we obtain that ν2 → 0. This with the fact that [Ā11, C̄0
11]

s stable gives that ν is stable, which leads to the stabilizability of
A + G, C0; B,D0]. □
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